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Control system design for general nonlinear flight dynamic models is con-

sidered through numerical simulation. The design is accomplished through a

numerical optimizer coupled with analysis of flight dynamic equations. In the

analysis, the general flight dynamic equations are numerically integrated and

dynamic characteristics are then identified from the dynamic response. The

design variables are determined iteratlvely by the optimizer to optimize a

prescribed objective function which is related to desired dynamic character-

istics. Generality of the method allows nonlinear effects of aerodynamics and

dynamic coupling to be considered in the design process. To demonstrate the

method, nonlinear simulation models for an F-SA and an F-16 configurations are

used to design dampers to satisfy specifications on flying qualities and con-

trol systems to prevent departure. The results indicate that the present

method is simple in formulation and effective in satisfying the design objec-

tives.

INTRODUCTION

At high angles of attack, the aerodynamic forces and moments are, in

general, time-dependent and nonlinear functions of motion variables. There-

fore, the traditional control system design method based on a llnearized

dynamic system are not appropriate. In addition, the aerodynamic, kinematic,

and inertial coupling phenomena are important to the high angle-of-attack

flight dynamics of modern aircraft. Ks a result, a number of high angle-of-

attack control concepts have emerged (refs. 1-4). Therefore, a suitable

control system design method must be capable of incorporating these coupling

phenomena with considerations of tlme-dependent, nonlinear aerodynamic forces

and moments. A control system designed without considering these coupling

phenomena often has a detrimental effect on the departure/spln resistance (ref.

5). Another feature of hlgh-alpha control system is the simultaneous utili-

zation of several control surfaces or devices. Therefore, a design method

capable of handling multiple input and output is necessary. A current approach

to solving this problem is by extensive piloted simulation (ref. 5).

Methods in optimal control theory represent possible approaches to solving

these problems under consideration. These methods are derived through calculus

of variation. However, computational methods in existence require lineari-

zatlon of dynamic equations and aerodynamics about trimmed conditions (ref.

6). Another alternative is to apply numerical optimization techniques without

llnearlzatlon as they are frequently used in structural and aerodynamic designs

of large systems. A similar approach has also been used in other control

applications in ref. 7.
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In the present method, a numerical optimization technique based on conju-

gate gradients and feasible directions (ref. 8) is coupled with an analysis

method which is to obtain numerical solutions of the nonlinear six degree-of-

freedom dynamic equations. Thls analysis method is to provide information

needed in the design process, such as damping ratios, frequencies, motion vari-

ables involved in dynamic instabilities, etc. Since the analysis method can

deal with nonlinearities in the dynamics and the aerodynamics and with any

general constraints on the control system configuration, the control system

designed with a numerical optimization technique can be very realistic and
effective.

NUMERICAL APPROACHES

Typically, a control system may be designed to enhance flying qualities,

to prevent flight departure, and to have an effective maneuver control

system. To demonstrate the present method, only the first two objectives will

be considered. That is, one is to design dampers at a moderate angle of attack

to satisfy specifications on flying qualities and the other to design a control

system to prevent flight departure at high angles of attack in a maneuver.

Numerical formulations to solve these problems are described in the following.

Design to Satisfy Flying Qualities Specifications

The general system of equations can be written as

m(_ - vr + wq) =mg x + FA + FT
X x

m(_ + ur - wp) = mgy + FA + FT
Y Y

m(w - uq + vp) = mg z + FA + FT
Z z

Ixx _ - I _ - Ixzpq + (I LA + LTxz zz - lyy)rq =

(la)

(ib)

(lc)

(ld)

lyy_ + (Ixx - Izz)pr + Ixz(p 2 - r2) = MA + _ (le)

Izz_ - IxzP + (Iyy - Ixx)pq + Ixzqr = NA + NT (If)

= p + q sin_ tane + r cos_ tane

= q cos_ - r sln_

$ = (q sln_ + r cos_)sece

a = tan-l(w/u)

(lg)

(lh)

(ii)

lJ)

= sln-l(v//u 2 + v 2 + w 2) (lk)
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where (u, v, w) are the three linear velocity components of the aircraft; (p,

q, r) are the angular velocity components; and (_, e, _) are the Euler angles

in bank, pitch, and yaw, respectively. The subscripts (x, y, z) appearing on

the rlght-hand side of Eqs. (la) - (Ic) denote components in the corresponding

coordinate directions; and (A, T) denote aerodynamic and thrust components,

respectively, g is the gravitational acceleration, and F's are the external

forces, while (L, M, N) are the moments about the (x-, y-, z-) axes. In

addition, m is the mass and Ixx, Ixz, etc., are the moments of inertia. The

aerodynamic forces and moments (FA, LA, MA, NA), including the control effects,

are represented in dimensionless coefficients in a tabulated form as functions

of motion variables in this study. The motion variables are (u, v, w, p, q,

r).

This system of equations is numerically integrated from an initial state

(usually a trimmed level flight condition) after disturbances (such as

impulsive control-surface deflections) are imposed to generate time-hlstory

data of motion variables.

For demonstrative purposes, it is assumed that dampers to provide flight

characteristics satisfying flying-qualities specifications are to be deter-

mined. This problem has been solved in the past by conventional methods, such

as the root-locus method, by using linearized equations of motion. It is con-

sidered here mainly to show the generality of the present method even without

llnearizlng the equations of motion. In the present method, the necessary

design information includes damping ratios, natural frequencies, and time con-

stants of the vehicle motions. These characteristics are identified from

calculated time-history results of motion variables after multlple-axls distur-

bances are imposed. The numerical method used for parameter identification is

the method of differential corrections described in the following.

A general discretized system output in the time domain is assumed to be of

the form:

n -_i_nitk m -_jt k

f(t k) = E e (Aicos_it k + Bisin_it k) + E C.e + Dt k + E
i=! j=l 3

(2)

9

where tk = At(k - I), k = I, 2, ..., K, _i = _nl/I - _ is the damped frequency

of the ith mode. The objective is to use Eq. (2) to fit the dynamic response

data [Qk = X(tk)] through the method of least squares to determine the damping

ratios (_i) natural frequencies (_ni) and time constants (I/_j), i = I, ..., n;

j = I, ..., m. These parameters appear nonlinearly in Eq. (2). Other un-

knowns, A i, Bi, Cj, D, and E, are linear parameters in Eq. (2). Because of

nonlinearity, finding a solution of the resulting nonlinear algebraic equations

from the least-square formulation is difficult. The best approach, as it has

been determined in the present investigation, is the method of differential

corrections. In other words, the unknown parameters are expressed as
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= _ik

= _ + A_O , etc., i = I, ..., n, j = I, ..., m
n i n ini k

where _ _ , ... are the initial approximations of the ith or jth un-

ik ' nik

knowns. Using Taylor series expansions, it is obtained that

n _f + AAi _f + ABi _f )
Qk + ek = f°(tk) + Z (A_i _i + A_ni_--_---i=l _

nlk

m 5f ) 5f 5f
+ 7, (ACj _f + Aoj _ + AD + AE + ...

 Cjk Jk
(3)

where ek is the residual. The least-square method is then applied to Eq. (3)

in such a way that

K
2

G = Y _. = minimum

k=l

The differential corrections (A_ i , etc.) which minimize the G-functlon are

determined by setting the first derivatives, 5G/O(A_i) , etc, to zero. Once

the differential corrections are determined, they are added to the initial

estimates of the unknowns and the process is repeated to determine a new set of

differential corrections until G is a minimum or until there is no significant

change in the unknowns. Typically, convergence is assumed if G 4 10 -7 .

After the necessary design information is obtained from the analysis part

of the algorithm, the optimizer is called to perform the design process.

The damper design problem here may be formulated as follows: find the

pitch rate feedback gain Kq, the roll rate feedback gain Kp, the yaw rate feed-

back gain Kr, the lateral acceleration feedback gain Kay, and the aileron-to-

rudder interconnect gain KARl, such that the following objective function is

minimized:

-BI

OBJ = e + E1 x l_sp I - _spl. +

-B2

e + E2 × l_p - _pl
1

+

+

-B3

×
e + E3 [_DI

-B5

e + E5 x I Trl - Trl

-B4
+

e + E4 x ]mnD 1 - _nD I

-B6
+

e + E6 x ITsl - Tsl

(4)
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where _sPl ' _PI' _DI' _nDl' Trl , and TSl are specified values to satisfy MIL-

F-8785B. _sp' _p' _D' enD, Tt, and Ts are values obtained in the analysis

part. In Eq. (4), Bi and Ei are some weighting factors. ¢ in the denominator

of the objective function is a small number used to prevent the objective func-

tion from being infinite and is set to 10-14 in the present algorithm. The

optimization problem is subject to constraints on magnitudes of damping ratios,

frequencies, time constants, overshoot, etc. In the optimization process, the

design variables are varied systematically by the optimizer to obtain numeri-

cally the gradients of the objective function and constraints. These gradients

are then used through the methods of conjugate gradients and feasible direc-

tions to determine the appropriate design variables to minimize the objective

function. The process continues until the objective function does not change
and the constraints are all satisfied.

Design to, Prevent Flight Departure

Again, Eqs. (I) are numerically integrated. During time integration, a

certain maneuver flight is imposed to induce departure of the airplane. One

example of the maneuver flight is to pull up the airplane (i.e., to increase

the angle of attack) and then induce a high roll rate afterwards. The present

algorithm is constructed on the assumption that a departure condition is

identifiable from the magnitude of the state vector, or motion variables.

Since the latter are directly obtained from time integration of Eqs. (I), no

further data manipulation is needed to calculate the necessary design infor-
mation.

The design objective is achieved by first assuming a control system struc-

ture. Then the design problem may be formulated for the demonstration cases to

be presented as follows.

Determine the aileron-rudder interconnect gain (KARl) , the side acceler-

ation feedback gain (Kay) , and the yaw damper gain (Kr) , etc., to

minimize the following objective function:

C3

OBJ = -ClPma x - C2atrim - ]=maxl + •

C4 C5 C6

I+maxl I maxl Irmax] +

c 7 c 8

lel ÷ = l,%rlmI ÷ = (s)

subject to various constraints depending on applications. Note that Eq. (5)

indicates that p (the roll rate) is to be maximized and ama x in the transient

motion, _max (yaw angle), _max (sideslip) and rma x (yaw rate) are to be mini-

mized, atrim is calculated as the average angle of attack over the whole time

period and may be used to define the limiting angle of attack to be discussed

later for the F-16. Specific applications are discussed in the next section.
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Two fighter configurations will be used to demonstrate the algorithm, one

being an F-5A and the other an F-16. A pitch damper design for the F-5A will

be considered first. Control to prevent flight departure will be discussed

next. For illustrative purposes, all system gains in the following consider-
ation are assumed constant.

A Pltch Damper DesiSn for an F-5A

The algorithm has been tested and found to work well at different flight

conditions to design dampers under multiple input conditions. At low angles of

attack, calculated results are found to be consistent with existing systems.

To demonstrate this computational tool, consider designing a pitch damper at a

Mach number of 0.3 and at an altitude of I0,000 ft. The corresponding atrlm is

determined to be 11.7 deg. Assume that a damping ratio of 0.65 (_spl) is re-

quired in the longitudinal dynamic response of the short-perlod mode. The

optimization problem may then be formulated as follows:

Determine the pitch damper gain constant (Kq) to

minimize the difference in the actual (_sp) and desired (_spl) damping
ratios; and

subject to the constraints that

0 < _sp < 1

0 < _ < I0 rad/sec.
n
sp

Limitations on the control system are that

the pitch rate feedback be limited to 4 deg/sec,

the elevator deflection limits are +5.5 deg to -17 deg., and

the elevator actuator rate limits are -26 to +26 deg/sec.

Fig. I shows that the pitch damper gain constant to satisfy this design problem

is 4.36. The existing system with Kq = 0.2 is not adequate to provide a

damping ratio of 0.65. Note that during the design process, motions along all

axes have been imposed to provide any possible effect of inertial coupling.

Control System to Prevent Yaw l)Iver_ence of an F-SA

The second example is to design a control system to prevent yaw divergence
of an F-5A during roll maneuver at high angles of attack. The aircraft 18

placed in a departure condition by a maximum constant elevator deflection to

increase the angle of attack, followed by a constant roll control deflection of

2 deg. The optimal control problem is formulated as follows.

Determine the aileron-rudder interconnect gain (KARl) , the side acceler-

ation feedback gain (Kay) , and the yaw damper gain (Kr) , to

maximize the roll rate, and

minimize the sideslip angle (6), the yaw rate (r), and the change in
heading angle (_).
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In other words, in Eq. (5) the terms associated with atrlm and lUmaxl are not

used. Some results for the time variation of motion variables are shown in

Fig. 2. It is seen that the present method is effective in satisfying the

design objective by reducing both the change in yaw and bank angles.

Control System to Prevent Pitch Departure of an F-16

The aerodynamic data are obtained from ref. 9. Since the F-16 is unstable

in pitch, design of a pitch control system is of major concern. The system

includes an angle-of-attack and normal-acceleration feedback control. The

airplane is first pulled up by applying the full stabilator deflection command

(-25°). The objective is to minimize Eq. (5) with

C 1 = 0.01, C2 = 0.03, C3 = i, C4 = 12, C5 = 0.01

C6 = 0.008, C7 = I, C8 = I

These weighting factors are chosen so that various terms in Eq. (5) have the

same order of magnitude. The design variables are the various gain con-

stants. Note that the u-feedback system is defined such that

6 due to a-feedback = K a - K (6)
e u c

Two flight conditions are examined, one without imposing a roll maneuver

after pull-up and the other with a roll maneuver. Results for the first case

are presented in Fig. 3. It is seen that if there is no angle-of-attack

limiting system (K u = 0, Kc = 0 ), the airplane will trim at an angle of attack

equal to about 66 deg, which iS the deep-stall condition. On the other hand,

the limiting system would limit the trim angle of attack to about 25 deg.

For the second case, a roll control of -I0 deg is applied between t = 22

and 34 sec. Note that roll should induce pltch-up due to inertial coupling.

The results shown in Fig. 4 indicate that no departure has occurred and atrim

is determined to be 24.7 deg. By changing the initial time at which the roll

control is applied, Utrlm can still be determined to be about 25 deg. There-

fore, it may be concluded that maximizing Utrim is to define approximately the

limiting angle of attack.

CONCLUSIONS

Application of numerical optimization techniques to control system design

was demonstrated for F-5A and F-16 configurations at high angles of attack.

The methodology accounted for nonlinearities in aerodynamics and dynamics.

Specific examples were presented to design control systems to satisfy flying

qualities requirements and to prevent flight departure. The results indicated

that the present method was effective in satisfying design objectives.
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